Terahertz surface plasmons in optically pumped graphene structures.

نویسندگان

  • A A Dubinov
  • V Ya Aleshkin
  • V Mitin
  • T Otsuji
  • V Ryzhii
چکیده

We analyze the surface plasmons (SPs) propagating along optically pumped single-graphene layer (SGL) and multiple-graphene layer (MGL) structures. It is shown that at sufficiently strong optical pumping when the real part of the dynamic conductivity of SGL and MGL structures becomes negative in the terahertz (THz) range of frequencies due to the interband population inversion, the damping of the THz SPs can give way to their amplification. This effect can be used in graphene-based THz lasers and other devices. Due to the relatively small SP group velocity, the absolute value of their absorption coefficient (SP gain) can be large, substantially exceeding that of optically pumped structures with dielectric waveguides. A comparison of SGL and MGL structures shows that to maximize the SP gain the number of graphene layers should be properly chosen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.

We evidence by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. We calculate the complex conductivity of graphene under optical pumping and determine the proper conditions for terahertz amplification in single layer graphene. It is shown that amplification in graphene occurs up to room temperature for moderate pum...

متن کامل

Metasurfaces for manipulating surface plasmons

Articles you may be interested in Modal and transient analysis of membrane acoustic metasurfaces Dispersion characteristics of surface plasmon polariton modes in a metallic slab waveguide with nonlinear magnetic cladding Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal

متن کامل

Nonlinear Terahertz Absorption of Graphene Plasmons.

Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmon...

متن کامل

Graphene-Based Periodic Gate Field Effect Transistor Structures for Terahertz Applications

We report on theoretical investigation of graphene based Field Effect Transistor (FET) structures for resonant absorption of terahertz (THz) radiation by the plasmons excited in the high sheet concentration and high carrier mobility active layers. Metallic grating gates with varying periods were used to couple the THz radiation into the plasmons in the active region of the devices. Such grating...

متن کامل

Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 23 14  شماره 

صفحات  -

تاریخ انتشار 2011